Bild: © Tobias - stock.adobe.com
Zeitschrift aqua viva, 4/2024
Literaturverzeichnis
Beitrag «In Zahlen: Gletschervorfelder: Das neue Land» (Seite 4 bis 5)
- BAFU (2006): Erstaufnahme alpine Auen. Schlussbericht: Methoden und Indikatoren, Ergebnisse Schweiz, Umsetzungshilfen.
- Lubini, V. / Wüthrich, R. & Birnstiel, E. (2023): Gewässerbiologisches Gutachten: Makrozoobenthos.
- Nagl, F. / Erschbamer, B. (2010): Vegetation und Besiedlungsstrategien. In: Koch E.-M. / Erschbamer, B. (Hg.): Glaziale und periglaziale Lebensräume im Raum Obergurgl.
- Vitasse, Y. et al. (2021): Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. In: Biological Reviews. Published online 27 April 2021.
Artikel «Gletschervorfelder: Schutzbedarf und Entwicklung» von Peter Gsteiger (Seite 12 bis 15)
- ETH Zürich: Gletscherschwund historisch. Zugriff: 8.11.2024.
https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2022/08/gletscherschwund-historisch.html - Geo7, (2021): Alpine Auen: Entwicklung 2000 – 2100.
- Gerber, B. et al. (1999): Gletschervorfelder und alpine Schwemmebenen als Auengebiete. Technischer Bericht. Schriftenreihe Umwelt Nr. 305. Hrsg.: Bundesamt für Umwelt, Wald und Landschaft (heute BAFU).
- Haeberli, W. et al. (2012): Gletscherschwund und neue Seen in den Schweizer Alpen. Artikel in «Wasser Energie Luft» – 104. Jahrgang, 2012, Heft 2, CH-5401 Baden
- Kraftwerke Oberhasli AG KWO (2024): Vergleichende Neuaufnahme von verschiedenen Gletschervorfeldern nach der Methode IGLES. Unveröffentlichter Bericht vom 15. März 2024.
- Kuhn, N. / Amiet, R. (1988): Inventar der Auengebiete von nationaler Bedeutung. Allgemeiner Teil. Entwurf für die Vernehmlassung. Eidg. Departement des Innern (EDI), Bern
- MeteoSchweiz: Globaler Klimawandel – aktueller Wissensstand. Zugriff: 8.11.2024.
www.meteoschweiz.admin.ch/klima/klimawandel/globaler-klimawandel-aktueller-wissensstand.html
Artikel «Naturgefahren im Zusammenhang mit Gletscherschmelze und Klimawandel» von Christian Huggel (Seite 26 bis 29)
- Allen, S. / Huggel, C. (2013): Extremely warm temperatures as a potential cause of recent high mountain rockfall. In: Glob. Planet. Change 107, 59–69.
https://doi.org/10.1016/j.gloplacha.2013.04.007 - Allen, S.K. et al. (2016): Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. In: Landslides 13, 1479–1491.
https://doi.org/10.1007/s10346-015-0584-3 - Fischer, L. et al. (2012): On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. In: Nat. Hazards Earth Syst. Sci. 12, 241–254.
https://doi.org/10.5194/nhess-12-241-2012 - GAPHAZ (2017): Assessment of Glacier and Permafrost Hazards in Mountain Regions – Technical Guidance Document. In: Allen, S.K. / Frey, H. / Huggel, C. (Eds.): Joint Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA).
- Haeberli, W. et al. (2016): New lakes in deglaciating high-mountain regions – opportunities and risks. In: Clim. Change 139, 201–214.
https://doi.org/10.1007/s10584-016-1771-5 - Haeberli, W. / Drenkhan, F. (2022): Future Lake Development in Deglaciating Mountain Ranges [WWW Document]. In: Oxf. Res. Encycl. Nat. Hazard Sci.
https://doi.org/10.1093/acrefore/9780199389407.013.361 - Hock, R. (2019): High Mountain Areas. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. World Meteorological Organization, Geneva, Switzerland, Geneva, Switzerland, pp. 131–202.
- Huggel, C. et al (2012): Ice thawing, mountains falling—are alpine rock slope failures increasing? In: Geol. Today 28, 98–104.
https://doi.org/10.1111/j.1365-2451.2012.00836.x - Huggel, C. (2010): Recent and future warm extreme events and high-mountain slope stability. In: Philos. Trans. R. Soc. A 368, 2435–2459.
https://doi.org/10.1098/rsta.2010.0078 - IPCC (2023): Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)].
- IPCC (2022): Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press, Cambridge UK and New York USA.
- Kos, A. et al. (2016): Contemporary glacier retreat triggers a rapid landslide response, Great Aletsch Glacier, Switzerland. In: Geophys. Res. Lett. 43, 2016GL071708.
https://doi.org/10.1002/2016GL071708 - Mergili, M. (2020): Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru). In: Hydrol. Earth Syst. Sci. 24, 93–114.
https://doi.org/10.5194/hess-24-93-2020 - Mölg, N. (2021): Inventory and evolution of glacial lakes since the Little Ice Age: Lessons from the case of Switzerland. Earth Surf. Process. Landf. 46, 2551–2564.
https://doi.org/10.1002/esp.5193 - Niggli, L. (2024): GLOF Risk Management Experiences and Options: A Global Overview. In: Oxford Research Encyclopedia of Natural Hazard Science.
https://doi.org/10.1093/acrefore/9780199389407.013.540 - Singh, A. (2024): Unveiling the catastrophic landslide-induced flash flood in Teesta River, Sikkim: insight from South Lhonak Glacial Lake. In: Landslides.
https://doi.org/10.1007/s10346-024-02378-7 - Walter, F. (2020): Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. In: Geomorphology 351, 106933.
https://doi.org/10.1016/j.geomorph.2019.106933 - Zekollari, H. et al. (2019): Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble. In: The Cryosphere 13, 1125–1146.
https://doi.org/10.5194/tc-13-1125-2019 - Zemp, M. (2019): Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. In: Nature 568, 382–386.
https://doi.org/10.1038/s41586-019-1071-0 - Zhang, G. (2024): Characteristics and changes of glacial lakes and outburst floods. In: Nat. Rev. Earth Environ. 1–16.
https://doi.org/10.1038/s43017-024-00554-w - Zhang, T. (2024): A massive lateral moraine collapse triggered the 2023 South Lhonak Lake outburst flood, Sikkim Himalayas. In: Landslides.
https://doi.org/10.1007/s10346-024-02358-x
Artikel «Gletscherrückgang und Makroinvertebraten in alpinen Flussnetzen» von Christopher Robinson (Seite 30 bis 33)
- Bonada, N. et al. (2007): Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: Implications for future climatic scenarios. Global Change Biology 13: 1658–1671. Doi: 10.1111/j.1365-2486.2007.01375.x
- Cauvy-Fraunié, S. et al. (2016): Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communication 7: 12025.
- IPCC (2023). AR6 Synthesis Report Climate Change 2023: Longer Report. The Intergovernmental Panel on Climate Change
https://www.ipcc.ch/report/ar6/syr/ - Paillex, A. et al. (2020). High stream intermittency in an alpine fluvial network: Val Roseg, Switzerland. Limnology and Oceanography 65: 557–568. Doi: 10:1002/lno.11324.
- Piano, E. et al. (2019): If Alpine streams run dry: the drought memory of benthic communities. In: Aquatic Sciences 81: 1–14. Doi: 10.1007/s00027-019-0629-0.
- Siebers, A.R. et al. (2019): Flow intermittency influences the trophic base, but not the overall diversity of alpine stream food webs. Ecography 42: 1523–1535. https://doi.org/10.1111/ecog.04597
- Tockner, K. (1997): Physico–chemical characterization of channel types in a glacial floodplain ecosystem (Val Roseg, Switzerland). In: Archiv für Hydrobiologie 140: 433–463.
- Wilkes, M.A. et al. (2023): Glacier retreat reorganizes river habitats leaving refugia for Alpine invertebrate biodiversity poorly protected. In: Nature Ecology & Evolution 7: 841–851. Doi: 10.1038/s41559-023-02061-5.